dr hab. Volodymyr Sushch
profesor Politechniki Koszalińskiej

Praca zawodowa i naukowa

Studia wyższe: Uniwersytet Lwowski, Ukraina, 1985
Stopień naukowy doktora: 1989, Instytut Matematyczny im. W. A. Steklowa Rosyjskiej Akademii Nauk, Moskwa
Stopień naukowy dr hab.: 2003, Uniwersytet Moskiewski im. W. Łomonosowa, Moskwa

  • 1989 - 1997 Instytut Problemów Stosowanych Mechaniki i Matematyki, Ukraińska Akademia Nauk
  • od 1997 Katedra Matematyki, Politechnika Koszalińska

Ważniejsze publikacje

  1. Sushch V.N.: Control in nonlocal boundary value problems, Differentsial'nye Uravneniya. Vol. 25. No 1. P. 145-153. (1989); English transl.in Differential Equations, 25. (1989).
  2. Sushch V.N.: Optimal control in nonlocal boundary value problems, Autoref. of Ph. D. Sci. Dissertation, Moscow, 1990.
  3. Sushch V.N.: Nonlocal problems with boundary control, Mat. Metody Fiz.-Mekh. Polya, 34, (1991), p. 50 - 55.; English transl. in J. Soviet Math. 66 (1993), No 6, p. 2595-2600.
  4. Sushch V.N.: A discrete analog of the Cauchy integral, Differentsial'nye Uravneniya. Vol.29, No 8, (1993), p. 1433 - 1441.; English transl. in Differential Equations, 29, No.8, 1242-1249 (1993).
  5. Sushch V.N.: Discrete models of invariant differential operators, Proceeding Intern. AMSE Conference "Applied Modeling & Simulation". Lviv (Ukraine). Sept.30-Oct.2, 1993, AMSE Press. P. 27-38.
  6. Sushch V.N.: The discrete analog of a nonlocal boundary value problem, Dop. NAN Ukraine, No 1, (1995), p. 38 - 40.
  7. Sushch V.N.: Difference Poisson equation on a curvilinear mesh, Differentsial'nye Uravneniya. Vol.32, No 5, (1996), p. 684 - 688.; English transl. in Differential Equations, 32 (1996).
  8. Sushch V.N.: A discrete model of Yang - Mills equations, Adv.in systems Science and Appl. Special Issue, (1997), p. 1 - 13.
  9. Sushch V.N.: Gauge-invariant discrete models of Yang - Mills equations. Mat. Zametki, Vol 61, No 5, (1997), p. 742 - 754.; English transl. in Mathematical Notes (1997).
  10. Sushch V.N.: Distributed control in a class of nonlocal boundary value problems, Mat. Metody Fiz.-Mekh. Polya, 40, No 3, (1997), p. 50 - 54.; English transl. in Journal Math. Sci., New York. No 1 (1999).
  11. Sushch V.N.: Operatory różniczkowe inwariantne w zagadnieniach fizyki matematycznej i modele dyskretne, Zeszyty naukowe wydziału BiIŚ, Koszalin, (1998), No 13, p. 315 - 322.
  12. Sushch V.N.: On some finite-difference analogs of invariant first-order hyperbolic systems, Differentsial'nye Uravneniya, 35, No 3, (1999), p. 411 - 417.; English transl. in Differential Equations 35 (1999).
  13. Sushch V.N.: On discrete models of the wave equations, Proceedings of Intern. Conference on Differential Equations "Equadiff99", Berlin, August 1-7, 1999. World Scientific, Vol. 1, p. 354 - 356 (2000).
  14. Sushch V.N.: Discrete models on the 2-sphere, Dop. NAN Ukraine, No 2, (2000), p. 27 - 32.
  15. Sushch V.N.: On some discretization of Yang-Mills equations in Minkowski space, Nonlinear Boundary Value Problems, Vol. 13, (2003), p. 197-208.
  16. Sushch V.N.: Some finite-difference model of a nonlocal boundary value problem for the Poisson equation. Trzydziesta ogólnopolska konferencja zastosowań matematyki, Zakopane-Kościelisko, 18-25.09.2001, s. 107.
  17. Sushch V.N.: On some differential-difference model of the wave equation. Trzydziesta pierwsza ogólnopolska konferencja zastosowań matematyki, Zakopane-Kościelisko, 17-24.09.2002, s. 118.
  18. Sushch V.N.: Discrete models of some mathematical physics problems, Autoref. of Dr. Sci. Dissertation (Habilitation). MAKS Press, Moscow, 2002, 27 p.
  19. Sushch V.N.: On some differential-difference model of the mixed problem for the wave equation, Mat. Metody Fiz.-Mekh. Polya, Vol. 45, No 3, (2002), p. 54 - 61.
  20. Sushch V.N.: Discrete analogs of operators generated by the Yang-Mills equations, Proceedings of Intern. Conference "Mathematical problems of mechanics of nonhomogeneous structures", Lviv 2003, p. 501-502.
  21. Sushch V.: Discrete model of Yang-Mills equations in Minkowski space, Cubo A Mathematical Journal, Vol. 6, No2, (2004), p. 35-50.
  22. Sushch V.: Some geometrical discrete model of the magnetic Laplacian.Trzydziesta trzecia ogólnopolska konferencja zastosowań matematyki, Zakopane-Kościelisko, 14-21.09.2004, s. 87-88.
  23. Sushch V.: Discrete models of the self-dual and anti-self-dual equations, Nonlinear Boundary Value Problems, Vol. 14, (2004), p. 112-117.
  24. Sushch V.: On some discrete model of magnetic Laplacian, Ukrainian Mathematical Bulletin, Vol. 2, No4, (2005), p. 583-599.
  25. Sushch V.: Discrete analogs of operators generated by Yang-Mills equations on the 4-dimensional torus. Book of abstracts International Conference "NPDE05", Alushta, September 17-23, 2005, p. 102.
  26. Sushch V.: Discrete models of operators generated by the Yang-Mills equations on a four-dimensional torus. Mat. Metod. Fiz.-Mekh. Polya, 49, No1, (2006), p.208-216.
  27. Sushch V.: A gauge-invariant discrete analog of the Yang-Mills equations on a double complex. Cubo A Mathematical Journal, vol. 8, No3, (2006), 61-78.
  28. Sushch V.: On a discrete magnetic Laplacian on differential forms, Book of abstracts of ICM 2006, Madrid 2006, p. 430-431.
  29. Sushch V.: On discrete analogs of magnetic Schrödinger operator, Book of abstracts of International Conference on Differential Equations dedicated to the 100th anniversary of Ya.B.Lopatynky, September 12-17, 2006, Lviv, p. 155-156.
  30. Sushch V.: Essential self-adjointness for two dimensional discrete magnetic Schrödinger operators, Book of abstracts of Equadiff2007, August 5-11, 2007, Vienna, p. 141.
  31. Sushch V.: Essential self-adjointness of a discrete magnetic Schredinger operator, Mat. Metod. Fiz.-Mekh. Polya, (2008). 51. No 1. P. 74-81; English translation in J. Math. Sci., (2009). 160. No. 3. P. 368-378.
  32. Sushch V.: Green function for a two-dimensional discrete Laplace-Beltrami operator, Cubo A Mathematical Journal, Vol. 10, No 2, (2008), p. 47-59.
  33. Sushch V.: A two-dimensional discrete Laplacian and the Green function, Proceedings of Intern. Conference "Modern problems of mechanics and mathematics", May 25-29, Lviv 2008, Vol. 3, p. 175-177.
  34. Sushch V.: Self-dual and anti-self-dual solutions of discrete Yang-Mills equations on a double complex. Cubo A Mathematical Journal, (2010). Vol. 12. No 3. P. 99-120. DOI: 10.4067/S0719-06462010000300007
  35. Sushch V.: Discrete analogue of Bogomolny equations, Mat. Metod. Fiz.-Mekh. Polya, (2011). 54. No 4. P. 36-44; English translation in J. Math. Sci., (2012). 187. No 5. P. 574-582.
  36. Sushch V.: Instanton-anti-instanton solutions of discrete Yang-Mills equations, Mathematica Bohemica, (2012). Vol. 137. No. 2. P. 219-228.
  37. Sushch V.: A double complex construction and discrete Bogomolny equations, in book: Differential and Difference Equations with Applications. Series: Springer Proceeding in Mathematics & Statistics. Vol. 47. 2013. DOI: 10.1007/978-1-4614-7333-6_57
  38. Sushch V.: A discrete model of the Dirac-Kähler equation, Rep. Math. Phys., (2014). 73(1). P. 109-125. DOI: 10.1016/S0034-4877(14)60035-5
  39. Sushch V.: On the chirality of a discrete Dirac-Kähler equation, Rep. Math. Phys., (2015). 76(2). P. 179-196. DOI: 10.1016/S0034-4877(15)30028-8
  40. Sushch, V.: Discrete Dirac-Kähler and Hestenes equations, in book: Differential and Difference Equations with Applications. Series: Springer Proc. Math. Stat.  Vol. 164.  P. 433-442. Springer, New York, 2016. DOI: 10.1007/978-3-319-32857-7_40
  41. Sushch, V.: Discrete Dirac-Kähler equation and its formulation in algebraic form, Pliska Stud. Math., (2016). 26. P. 225-238.
  42. Sushch, V.: Discrete versions of some Dirac type equations and plane wave solutions,  in book: Differential and Difference Equations with Applications (ICDDEA 2017), Springer Proceedings in Mathematics and Statistics. Vol. 230. P. 463-475. Springer New York LLC. 2018. DOI: 10.1007/978-3-319-75647-9_37
  43. Sushch, V.:  A Discrete Dirac-Kähler Equation Using a Geometric Discretisation Scheme, Advances in Applied Clifford Algebras, (2018). 28(4). P. 1-17. DOI: 10.1007/s00006-018-0889-0
  44. Sushch, V.: A Discrete Version of Plane Wave Solutions of the Dirac Equation in the Joyce Form. Advances in Applied Clifford Algebras,(2020). 30(46) DOI: 10.1007/s00006-020-01072-w
  45. Sushch, V.:  Chiral Properties of Discrete Joyce and Hestenes Equations,  in book: Differential and Difference Equations with Applications. Springer Proceedings in Mathematics and Statistics. Vol. 333. P. 765-778.  Springer New York LLC. 2020. DOI:10.1007/978-3-030-56323-3_55
  46. Sushch, V.: 2D Discrete Hodge–Dirac Operator on the Torus. Symmetry. (2022); 14(8):1556. DOI:10.3390/sym14081556
  47. Sushch, V.: 2D Discrete Yang–Mills Equations on the Torus. Symmetry. (2024); 16(7): 823; https://doi.org/10.3390/sym16070823

 

Podręczniki

  1. Kierkosz I., Sushch V.: Matematyka. Wybrane zagadnienia z analizy matematycznej. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2010.
  2. Kierkosz I., Sushch V.: Matematyka. Wybrane zagadnienia z algebry liniowej, geometrii analitycznej i analizy matematycznej. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2011.
  3. Kierkosz I., Sushch V.: Matematyka. Całki wielokrotne i krzywoliniowe z zastosowaniami. Szeregi liczbowe i funkcyjne. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2012.
  4. Kierkosz I., Sushch V.: Matematyka. cz.1. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2016.
  5. Kierkosz I., Sushch V.: Matematyka. cz.2. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2019.

Ta strona używa plików cookies. Kontynuując przeglądanie wyrażasz na to zgodę.

Możesz dowiedzieć się więcej o naszej Polityce prywatności.

OK