Selected publications of the Department of Mathematics for last years (2013-2024):

2024

  1. Y. Povstenko, T. Kyrylych, B. Woźna-Sześniak, A. Yatsko (2024), Fractional Heat Conduction with Heat Absorption in a Solid with a Spherical Cavity under Time-Harmonic Heat Flux, Applied Sciences 14(4):1627. 100p link

 2022

  1. Y. Povstenko, T. Kyrylych, B. Woźna-Sześniak, R. Kawa, A. Yatsko (2022), En External Circular Crack in an Infinite Solid under Axisymmetric Heat Flux Loading in the Framework of Fractional Thermoelasticity, Entropy 24(70). 100p link
  2. V. Sushch (2022), 2D Discrete Hodge–Dirac Operator on the Torus, Symmetry 14(8):1556. 70p link

2021

  1. V. I. Bocanet, K. Brown, A. Uukkivi, F. Soares, A. P. Lopes, A. Cellmer, C. Serrat, C. Fenise, F. M. Serdean, E. Safiulina, G. Kelly, J. Cymerman, I. Kierkosz, V. Sushch, M. Latõnina, O. Labanova, M. Montserrat Bruguera, C. Pantaz, M. Rosa Estela (2021), Change in gap perception within current practices in assessing students learning mathematics, Sustainability 13 (8), art. no. 4495. 100p link

 2020

  1. V. Sushch (2020). A Discrete Version of Plane Wave Solutions of the Dirac Equation in the Joyce Form, Advances in Applied Clifford Algebras 30(46). 70p link

2019

  1. T. Górecki, M. Łuczak (2019), The influence of the Sakoe-Chiba band size on time series classification, Journal of Intelligent & Fuzzy Systems 36(1), 527-539. link
  2. I. Kierkosz, M. Łuczak (2019), A one-pass heuristic for nesting problems, Operations Research and Decisions 29(1), 37-60. link

2018

  1. V. Sushch (2018), A Discrete Dirac-Kähler Equation Using a Geometric Discretisation Scheme, Advances in Applied Clifford Algebras 28(4), 1-17. link
  2. V. Sushch (2018), Discrete versions of some Dirac type equations and plane wave solutions, Differential and Difference Equations with Applications (ICDDEA 2017), Springer Proceedings in Mathematics & Statistics 230, 463-475. link
  3. M. Łuczak (2018), Combining raw and normalized data in multivariate time series classification with dynamic time warping, Journal of Intelligent & Fuzzy Systems 34(1), 373-380. link

2017

  1. M. Łuczak (2017), Univariate and multivariate time series classification with parametric integral dynamic time warping, Journal of Intelligent & Fuzzy Systems 33(4), 2403-2413. link
  2. T. Górecki, M. Łuczak (2017), Stacked regression with a generalization of the Moore-Penrose pseudoinverse, Statistics in Transition 18(3), 443-458. link

2016

  1. V. Sushch (2016), Discrete Dirac-Kähler and Hestenes Equations, Differential and Difference Equations with Applications (ICDDEA 2015), Springer Proceedings in Mathematics & Statistics 164, 433-442. link
  2. T. Górecki, M. Łuczak (2016), Evolutionarily tuned generalized pseudo-inverse in linear discriminant analysis, Computing and Informatics 35(3), 615-634. link
  3. M. Łuczak (2016), Hierarchical clustering of time series data with parametric derivative dynamic time warping, Expert Systems with Applications 62, 116-130. link

2015

  1. V. Sushch (2015), On the Chirality of a Discrete Dirac-Kähler Equation, Reports on Mathematical Physics 76(2), 179-196. link
  2. T. Górecki, M. Łuczak (2015), Multivariate time series classification with parametric derivative dynamic time warping, Expert Systems with Applications 42(5), 2305-2312. link

2014

  1. A. Błażejewski, P. Kozioł, M. Łuczak (2014), Acoustical Analysis of Enclosure as Initial Approach to Vehicle Induced Noise Analysis Comparatevely Using STFT and Wavelets, Archives of Acoustics 39(3), 385-394. link
  2. I. Kierkosz, M. Łuczak (2014), A hybrid evolutionary algorithm for the two-dimensional packing problem, Central European Journal of Operations Research 22(4), 729-753. link
  3. V. Sushch (2014), A discrete model of the Dirac-Kähler equation, Reports on Mathematical Physics 73(1), 109-125. link
  4. P. Kozioł (2014), Wavelet approximation of Adomian's decomposition applied to the nonlinear problem of a double-beam response subject to a series of moving loads, Journal of Theoretical and Applied Mechanics 52(3), 687-697. link
  5. T. Górecki, M. Łuczak (2014), Non-isometric transforms in time series classification using DTW, Knowledge-Based Systems 61, 98-108. link
  6. T. Górecki, M. Łuczak (2014), First and second derivative in time series classification using DTW, Communications in Statistics-Simulation and Computation 43(9), 2081-2092. link
  7. T. Piecuch, J. Piekarski, G. Malatyńska (2014), Filtracja z utworzeniem osadu o małej ściśliwości na siatce filtracyjnej, Gospodarka Surowcami Mineralnymi-Mineral Resources Management 30(3), 83-97. link
  8. T. Piecuch, J. Piekarski, G. Malatyńska (2014), Filtracja przy stałym przepływie mieszanin tworzących osady o małej ściśliwości, Rocznik Ochrona Środowiska 16. link

2013

  1. V. Sushch (2013), A Double Complex Construction and Discrete Bogomolny Equations, Differential and Difference Equations with Applications (ICDDEA 2011), Springer Proceedings in Mathematics & Statistics 47, 615-624. link
  2. Z. Hryniewicz, P. Kozioł (2013), Wavelet-based solution for vibrations of a beam on a nonlinear viscoelastic foundation due to moving load, Journal of Theoretical and Applied Mechanics 51(1), 215-224. link
  3. T. Górecki, M. Łuczak (2013), Using derivatives in time series classification, Data Mining and Knowledge Discovery 26(2), 310-331. link
  4. T. Górecki, M. Łuczak (2013), Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science 23(2), 463-471. link
  5. T. Piecuch, J. Piekarski, G. Malatyńska (2013), The Equation Describing the Filtration Process with Compressible Sediment Accumulation on a Filter Mesh, Archives of Environmental Protection 39(1), 93-104. link
  6. T. Piecuch, J. Piekarski, G. Malatyńska (2013), Filtration of Mixtures Forming Compressible Sediments, Rocznik Ochrona Środowiska 15, 39-58. link

This site uses cookies. Continuing browsing you are agreeing to this.

You can learn more about our Privacy policy.

OK